On Irreducibility of Tensor Products of Yangian Modules

نویسندگان

  • Maxim Nazarov
  • Vitaly Tarasov
چکیده

of generators T (s) ij with s = 1, 2 , . . . and i , j = 1 , . . . , N is given by (1.1), (1.2). Comultiplication ∆ : Y(glN ) → Y(glN )⊗Y(glN ) is defined by (1.1), (1.16). The algebra Y(glN ) admits an alternative definition in terms of the ascending chain U(gl1) ⊂ U(gl2) ⊂ . . . of classical universal enveloping algebras [O]. For any non-negative integer M consider the commutant in U(glM+N ) of the subalgebra U(glM ) . This commutant is generated by the centre of the subalgebra U(glM ) and a homomorphic image of the Yangian Y(glN ) , see Proposition 1.1. The intersection of the kernels in Y(glN ) of all these homomorphisms for M = 0, 1, 2 , . . . is zero. For any dominant integral weights λ and μ of the Lie algebras glM+N and glM consider the subspace Vλ,μ in the irreducible glM+N -module Vλ of highest weight λ formed by all singular vectors with respect to glM of weight μ . The algebra Y(glN ) acts in Vλ,μ irreducibly through the above homomorphism. Further, for any complex number h there is an automorphism τh of the algebra Y(glN ) defined in terms of the generating series (1.1) by the assignment Tij(u) 7→ Tij(u+ h) . By pulling back the Y(glN )-module Vλ,μ through this automorphism we obtain an irreducible Y(glN )-module, which we denote by Vλ,μ(h) and call elementary. Any formal series f(u) ∈ 1 + uC [[u]] also defines an automorphism ωf of the algebra Y(glN ) by Tij(u) 7→ f(u) · Tij(u) . Further, there is a canonical chain of algebras Y(gl1) ⊂ . . . ⊂ Y(glN ). The elementary modules are distinguished amongst all irreducible finite-dimensional Y(glN )-modules W by the following fact. Take the commutative subalgebra A(glN ) in Y(glN ) generated by the centres of all algebras in the latter chain. Then the action of this subalgebra in W is semi-

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Irreducibility criterion for tensor products of Yangian evaluation modules

The evaluation homomorphisms from the Yangian Y(gln) to the universal enveloping algebra U(gln) allow one to regard the irreducible finite-dimensional representations of gln as Yangian modules. We give necessary and sufficient conditions for irreducibility of tensor products of such evaluation modules. AMS subject classification (2000): 17B37.

متن کامل

Irreducibility of fusion modules over twisted Yangians at generic point

With any skew Young diagram one can associate a one parameter family of ”elementary” modules over the Yangian Y(glN ). Consider the twisted Yangian Y(gN ) ⊂ Y(glN ) associated with a classical matrix Lie algebra gN ⊂ glN . Regard the tensor product of elementary Yangian modules as a module over Y(gN ) by restriction. We prove its irreducibility for generic values of the parameters.

متن کامل

Local Weyl modules and cyclicity of tensor products for Yangians

We provide a sufficient condition for the cyclicity of an ordered tensor product L = Va1(ωb1) ⊗ Va2(ωb2) ⊗ . . . ⊗ Vak(ωbk) of fundamental representations of the Yangian Y (g). When g is a classical simple Lie algebra, we make the cyclicity condition concrete, which leads to an irreducibility criterion for the ordered tensor product L. In the case when g = sll+1, a sufficient and necessary cond...

متن کامل

Irreducibility of the tensor product of Albeverio's representations of the Braid groups $B_3$ and $B_4$

‎We consider Albeverio's linear representations of the braid groups $B_3$ and $B_4$‎. ‎We specialize the indeterminates used in defining these representations to non zero complex numbers‎. ‎We then consider the tensor products of the representations of $B_3$ and the tensor products of those of $B_4$‎. ‎We then determine necessary and sufficient conditions that guarantee the irreducibility of th...

متن کامل

Tensor product weight modules over the Virasoro algebra

The tensor product of highest weight modules with intermediate series modules over the Virasoro algebra was discussed by Zhang [Z] in 1997. Since then the irreducibility problem for the tensor products has been open. In this paper, we determine the necessary and sufficient conditions for these tensor products to be simple. From non-simple tensor products, we can get other interesting simple Vir...

متن کامل

Bessel multipliers on the tensor product of Hilbert $C^ast-$‎ modules‎

In this paper, we first show that the tensor product of a finite number of standard g-frames (resp. fusion frames, frames) is a standard g-frame (resp. fusion frame, frame) for the tensor product of Hilbert $C^ast-$ modules and vice versa, then we consider tensor products of g-Bessel multipliers, Bessel multipliers and Bessel fusion multipliers in Hilbert $C^ast-$modules. Moreover, we obtain so...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008